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The problem: Recent research has shown that
decadal-to-multidecadal (D2M) climate variability is
associated with environmental changes that have
important consequences for human activities, things
like water availability, frequency of hurricanes, and
so forth. As scientists, how do we convert these
relationships into decision support products useful
to water managers, insurance actuaries, and
others, whose principal interest lies in knowing
when a future climate regime shift will occur that
affects their activities? Unfortunately, numerical
models are far from being able to make
deterministic predictions for future D2M climate
shifts. However, the recent development of
paleoclimate reconstructions such as the Gray et al.
(2004) tree proxy for the Atlantic multidecadal
oscillation (AMO) give us a viable alternative: to
estimate distribution functions for climate indices
that allow us to calculate the probability of future
D2M regime shifts.

In this paper, we show how probabilistic decision
support tools can be developed for a specific
climate mode — the AMO as represented by the
Gray et al. (2004) tree ring reconstruction. The
methods are robust and can, in principle, be applied
to any D2M climate mode for which a sufficiently
long index series exists.
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Using the method of Ebisuzaki (1997), the 424-year
smoothed tree ring proxy series for the AMO (Gray
et al. 2004) (top panel) can be used to generate
additional series of the same length and with the
same power spectrum, as in the three lower panels.
Doing so is equivalent to taking similar samples of
the AMO over a much longer time period for which
we assume the AMO to be stationary, i.e., its
statistical characteristics remain unchanged. We
are specifically interested in doing a Monte Carlo-
style resampling of the intervals between AMO
phase shifts, as defined by the zero crossings of the
series (plotted numbers in years).

Original AMO (solid black) + 20 Replicates (gray envelope)

Spectral Density

10" 10
Froquency (cpy)

The dark curve is the autospectrum of the Gray et
al (2004) proxy index. The light-shaded envelope is
the mean *20 spectrum of 50 resampled time
series. The Ebisuzaki resampling method consists
of transforming the original time series into the
frequency domain, randomizing the phases, and
reverse transforming back to the time domain.

As can be seen, the autospectrum of the original
data is preserved by the Monte Carlo samples.

The resampling can be done as many times as
needed to obtain a statistically viable collection of
AMO phase intervals
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The empirical distribution (blue histogram) of
multiple-resampled AMO phase intervals can be
fitted by the skewed Gamma (I') probability density
function as shown in the top panel, resulting in the
estimated shape (A) and scale (B) parameters for
the hypothesized distribution. A Kolmogorov-
Smirnov goodness-of-fit test of the cumulative
distributions (lower panel) typically shows the
Gamma fit to be successful at the 95% significance
level. Stable estimates of A & B are obtained by
repeating the procedure many times and averaging.
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The 424-year proxy series is divided into three 141-year
segments and 50 parameter estimates of shape (A, above)
and scale (B, below) are obtained for each. Box & whiskers
are shown to the left of the dotted line. The same is done
for the 146-year instrumental series (right). The mean of 50
estimates for the entire proxy series (424 years) is shown
by the horizontal black lines. We see that the 424-year
means are bracketed by the segments and that the
instrumental values fall in the same ranges. However, it
appears that the segment ranges are distinct, indicating that
the AMO interval statistics are nonstationary. This means
that the segment statistics, not those of the entire series,
must collectively be used for uncertainty estimates.
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Using the mean Gamma parameters for the 424-year proxy
series, we can now calculate and graph the conditional
probability of an AMO phase change within the next Y
years (ordinate) given that X years have elapsed since the
last change (abcissa). The AMO went positive circa 1994
(X=11), indicating a probability of ~30% for a reverse shift
within the next 5 years, and ~70% for a shift within the next
15 years. There is an rms uncertainty of about 4-5%
associated with the 99% confidence interval of segment
parameter estimates about the 424-year mean.

Contingent impacts issue from these probabilities. Thus,
e.g., a shift to an associated cycle of Florida droughts
appears likely (> 50%) sometime before about 2015-2020.
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Note that, on the previous graph one can subtract the
probability for Y=t1=5 years from the probability for Y=t2=15
years to obtain the probability that a change will occur
between 5 and 15 years from the present. The difference is
slightly more than 40%. For the case of X=11 we can now
plot the probability P(t1<T<t2) on a nomogram as a function
of t2 (ordinate) versus t1 (abcissa). Of course, with each
year that passes the graph must be updated. For the
example at hand (t1=5, t2=15) the nomogram indicates a
probability of 42%.

These are the sorts of decision support tools that can be
developed from D2M proxy climate indices to reduce the
uncertainty in management decisions over a wide range of
activities affected by D2M climate cycles, e.g., water
management, hurricane risk, etc. Other products can be
developed as well, such as the joint probability of changes
in two D2M modes, e.g., the AMO and the PDO.

Discussion:

The methods shown here demonstrate ways in
which paleoclimate proxy series can be used to
develop useful decision support products for
water managers and others involved in activities
affected by decadal-to-multidecadal (D2M)
climate variability. The methods are not confined
to a single climate mode; they can be applied to
any climate mode series of sufficient length.

Conclusions:

1) Given a long enough (proxy) time series for a
climate mode index, it is possible to randomly
“resample” the longer statistical population from
which the observations are obtained, and to fit a
Gamma distribution to the intervals between
climate shifts (zero crossings).

2) Although further testing may show that the
statistics are nonstationary, this does not
invalidate the approach, it merely increases the
uncertainty of the results.

3) The AMO, as represented by the Gray et al.
(2004) proxy index, is indeed nonstationary over
a 400+ year interval. The resulting uncertainty in
probability calculations is about 4-5%.




